
Journal of Nonlinear Analysis and Optimization

Vol. 16, Issue. 1: 2025

ISSN : 1906-9685

Web Security Threat Detection
Prof.B. AMARNATHREDDY1, KUNCHALA HEMANTH2

#1 Assistant Professor #2 M.C.A Scholar

Department of Master of Computer Applications,

Qis College of Engineering and Technology

ABSTRACT:
Web applications play a crucial role in modern society, offering a wide range of services from

e-commerce to social networking. However, they are also a common target for cyberattacks

due to their complexity and the vast amount of sensitive information they handle. Web

vulnerabilities, such as SQL injection, cross-site scripting (XSS), and cross-site request forgery

(CSRF), pose significant threats to the security of web applications and their users.This paper

provides an overview of common web vulnerabilities, their impact, and current approaches for

mitigating them. We discuss the importance of secure coding practices, regular security audits,

and the use of security tools and frameworks to protect web applications from potential attacks.

Additionally, we explore emerging trends and technologies, such as machine learning and

artificial intelligence, that show promise in improving web application security.By

understanding the nature of web vulnerabilities and implementing appropriate security

measures, developers and organizations can enhance the security posture of their web

applications and protect against potential threats.
INTRODUCTION:

Web applications play a crucial role in

modern society, facilitating various online

activities such as e-commerce, social

networking, and information sharing.

However, the widespread use of web

applications also makes them a target for

malicious actors seeking to exploit

vulnerabilities for nefarious purposes. Web

vulnerabilities can lead to data breaches,

financial loss, and damage to an

organization's reputation.Web vulnerability

refers to a weakness or flaw in a web

application that can be exploited by

attackers to compromise the security of the

application or the data it processes. These

vulnerabilities can exist at various levels of

the web application stack, including the

web server, application server, database

server, and client-side scripts.Common web

vulnerabilities include SQL injection,

cross-site scripting (XSS), cross-site

request forgery (CSRF), and insecure direct

object references. These vulnerabilities can

be exploited to steal sensitive information,

modify data, or execute malicious code on

the user's device.In recent years, the number

and complexity of web vulnerabilities have

increased, driven by the growing

sophistication of attacks and the rapid

evolution of web technologies. As a result,

organizations must take proactive measures

to identify and mitigate web vulnerabilities

to protect their assets and maintain the trust

of their users. The proposed system for

managing web vulnerabilities aims to

address the limitations of the existing

system by leveraging advanced

technologies and approaches. One key

aspect of the proposed system is the

integration of automated vulnerability

scanning tools with machine learning

algorithms.By using machine learning, the

system can improve the accuracy of

1822 JNAO Vol. 16, Issue. 1: 2025

vulnerability detection and reduce false

positives and false negatives. Machine

learning models can be trained on large

datasets of known vulnerabilities to

recognize patterns and anomalies in web

application code, making them more

effective at identifying potential

vulnerabilities.Another key component of

the proposed system is the use of

continuous security testing and monitoring.

Rather than relying on periodic scans or

manual reviews, the system continuously

monitors web applications for

vulnerabilities and alerts developers in real-

time. This proactive approach allows

vulnerabilities to be identified and

addressed promptly, reducing the risk of

exploitation.Additionally, the proposed

system emphasizes the importance of

secure coding practices and developer

training. Developers are provided with tools

and resources to help them write secure

code, such as secure coding guidelines and

automated code analysis tools. Regular

training sessions and workshops are also

conducted to raise awareness about web

vulnerabilities and best practices for

mitigating them.

LITERATURE REVIEW:

1. Huang et al. (2003) – “Web

Application Security Assessment

by Fault Injection and Behavior

Monitoring”

• Approach: Dynamic analysis by fault

injection to discover vulnerabilities.

• Merits:

o Can detect runtime

vulnerabilities.

o Works without needing access

to source code.

• Demerits:

o High false positives.

o Requires significant

computational resources.

2. Williams and Wichers (2006) –

OWASP Top Ten Project

• Approach: Community-driven list

identifying the top 10 critical web

application security risks.

• Merits:

o Widely accepted and updated

regularly.

o Educates developers and

auditors.

• Demerits:

o Descriptive but not a detection

method.

o Not exhaustive; only covers the

top 10.

3. Musch, M. et al. (2018) – “A

Survey on Web Application

Vulnerability Detection Tools”

• Approach: Comparative study of

static, dynamic, and hybrid tools.

• Merits:

o Evaluates real-world tools.

o Identifies gaps in coverage and

performance.

• Demerits:

o Lacks original detection

techniques.

o Results may vary based on test

cases.

4. Fonseca et al. (2007) – “Testing

and Comparing Web Vulnerability

Scanning Tools for SQL Injection

and XSS Attacks”

• Approach: Empirical evaluation of

scanning tools like Acunetix, Nessus,

etc.

• Merits:

o Practical relevance for

developers and testers.

o Highlights strengths and

weaknesses of each tool.

1823 JNAO Vol. 16, Issue. 1: 2025

• Demerits:

o Limited to specific attack types

(SQLi, XSS).

o May not reflect newer

vulnerabilities.

5. Antunes & Vieira (2015) –

“Comparing the Effectiveness of

Penetration Testing and Static

Code Analysis”

• Approach: Comparison of static code

analysis vs. penetration testing.

• Merits:

o Highlights trade-offs between

early detection and real-world

simulation.

o Useful for choosing the right

technique.

• Demerits:

o Does not provide new

detection algorithms.

o Static analysis may miss logic

flaws.

6. Doupe et al. (2010) – “Wepawet:

An Automated Web Exploit

Detection System for JavaScript”

• Approach: Automated dynamic

analysis of JavaScript code.

• Merits:

o Effective against obfuscated

malware.

o Scalable cloud-based

implementation.

• Demerits:

o Focuses only on client-side

code.

o May not detect server-side

issues.

7. Li et al. (2011) – “Parameterized

Unit Testing for Web Security”

• Approach: Uses unit testing with

parameters to test web apps.

• Merits:

o Integrates with development

workflows.

o Low false positives.

• Demerits:

o Requires developer expertise.

o Not effective without thorough

test coverage.

SYSTEM ARCHITECTURE:

RESULTS:

In this project we are implementing

SVM and Light GBM machine

learning algorithms o detect phishing

website URLS. We are training all

this algorithms with normal and

phishing URLS and build a trained

model and this train model will be

applied on new TEST URL to detect

whether its normal or phishing URL.

In this project you asked to use UCI

machine learning phishing dataset but

this dataset contains only 0’s and 1’s

values like below screen

1824 JNAO Vol. 16, Issue. 1: 2025

From above dataset ML algorithms

can get trained but we can’t

understand anything so I am using

REAL WORLD URL dataset which

contains normal and phishing URLS

like below screen

In above screen you can see our

dataset contains 2 folders called

benign (phishing URLS) and valid

(normal URL) and this are real world

URLS and we will train all

algorithms with above dataset and

then when we input any test URL

then ML model will predict as normal

or phishing

To run this project double click on

‘run.bat’ file to start python DJANO

server like below screen

In above screen DJANGO webserver

started and now open browser and

enter URL

http://127.0.0.1:8000/index.html and

press enter key to get below output

In above screen click on ‘Admin

Login Here’ link to get below login

screen

In above screen enter username and

password as ‘admin’ and ‘admin’ and

then press button to get below output

http://127.0.0.1:8000/index.html

1825 JNAO Vol. 16, Issue. 1: 2025

In above screen click on ‘Run SVM

Algorithm’ link to train SVM

algorithm and get below output

In above screen we can see SVM

confusion matrix where x-axis

represents predicted class and y-axis

represents TRUE class and we can

see SVM predict 2977 records

correctly as NORMAL and only 145

are incorrect prediction and it predict

824 records as PHISHING URL and

only 26 are incorrect prediction and

now close above graph to get below

output

In above screen with SVM we got

95% accuracy and now click on ‘Run

Light GBM Algorithm’ link to get

below output

In above screen we can see Decision

Tree confusion matrix graph and now

close above graph to get below output

In above screen with Light GBM also

we got 96% accuracy and now click

on ‘Test Your URL’ link to get below

screen

In above screen enter any URL and

then press button and then Light

GBM will predict whether that URL

IS normal or phishing

In above screen I entered URL as

https://mail.google.com and then

press button to get below output

https://mail.google.com/

1826 JNAO Vol. 16, Issue. 1: 2025

In above screen in blue colour text we

can see given URL predicted as

GENUINE (normal) and now test

other URL. Similarly now I will enter

Google.com in below screen

In above screen I gave URL as

Google.com and below is the output

In above screen Google.com also

predicted as Genuine. Now in below

screen from internet I am taking one

phishing URL and then input to my

application to get prediction

In above screen blue colour URL is

the phishing URL and I will input that

to my application in below screen and

below is the phishing URL from

internet

‘https://in.xero.com/3LQDhRwfvoQ

feDtlDMqkk1JWSqC4CMJt4VVJRs

GN’

In above screen I entered same URL

and press button to get below output

In above screen in blue colour text we

can see application detected

PHISHING in given URL and

similarly you can enter any URL and

detect it as NORMAL or phishing

CONLUSION

In conclusion, web vulnerabilities pose a

significant threat to the security and

integrity of web applications. Common

vulnerabilities such as SQL injection, cross-

site scripting (XSS), and cross-site request

forgery (CSRF) can be exploited by

attackers to steal sensitive information,

modify data, or execute malicious code. To

mitigate these vulnerabilities, organizations

should implement secure coding practices,

such as input validation and output

encoding, to prevent vulnerabilities from

being introduced into web applications.

Additionally, the use of automated tools for

vulnerability detection and regular security

audits can help identify and address

vulnerabilities in existing web

1827 JNAO Vol. 16, Issue. 1: 2025

applications.It is crucial for organizations to

stay vigilant and proactive in addressing

web vulnerabilities, as the threat landscape

continues to evolve. By taking proactive

measures to secure their web applications,

organizations can reduce the risk of

exploitation and protect their assets and

reputation.

FUTURE WORK:

1. AI and Machine Learning-Based

Detection

• Future Direction: Develop

adaptive models that can learn from

web traffic patterns and detect zero-

day attacks.

• Justification: Traditional signature-

based methods cannot detect novel

or obfuscated vulnerabilities.

• Challenge: Reducing false positives

and maintaining model accuracy in

real-time environments.

2. Automated Vulnerability Testing

Frameworks

• Future Direction: Create fully

automated, intelligent frameworks

for vulnerability discovery and

remediation.

• Justification: Manual testing is

time-consuming and often

incomplete.

• Challenge: Automating logical flaw

detection and contextual security

analysis.

3. Security for Modern Web

Technologies

• Future Direction: Explore

vulnerabilities in Single Page

Applications (SPAs), Progressive

Web Apps (PWAs), and

WebAssembly.

• Justification: These technologies

are increasingly used but less

understood in terms of their security

implications.

• Challenge: Tooling support and

lack of mature security best

practices.

4. Vulnerability Detection in APIs and

Microservices

• Future Direction: Design security

testing tools specifically tailored for

REST, GraphQL, and microservice

communication.

• Justification: Web apps are

increasingly backend-driven with

APIs as primary attack vectors.

• Challenge: Dynamic environments

and complex access control policies.

5. Human-Centric Security Models

• Future Direction: Incorporate user

behavior and human error modeling

into web security tools.

• Justification: Many security

breaches stem from social

engineering or misconfiguration.

• Challenge: Balancing usability and

security in real-world applications.

6. Secure Development Lifecycle

Integration

• Future Direction: Embed security

testing and vulnerability scanning

into CI/CD pipelines.

• Justification: Early detection

reduces remediation costs and

improves quality.

• Challenge: Avoiding performance

bottlenecks and ensuring developer

adoption.

1828 JNAO Vol. 16, Issue. 1: 2025

7. Better Defense Mechanisms Against

Client-Side Attacks

• Future Direction: Strengthen

defenses against client-side attacks

like DOM-based XSS and

clickjacking.

• Justification: Client-side logic is

expanding and becoming a primary

target.

• Challenge: Browsers vary in

support for policies like CSP, and

developers often misconfigure

them.

8. Privacy and Compliance-Oriented

Security

• Future Direction: Align

vulnerability assessment with

GDPR, CCPA, and other

compliance standards.

• Justification: Web vulnerabilities

increasingly intersect with data

privacy laws.

• Challenge: Legal and technical

integration of privacy and security

testing.

9. Real-Time Monitoring and Response

Systems

• Future Direction: Implement

systems for real-time detection and

automated mitigation of attacks.

• Justification: Rapid response

minimizes impact from exploits.

• Challenge: Ensuring accuracy and

low-latency without affecting

performance.

10. Security Awareness and Developer

Education

• Future Direction: Enhance

developer tools and training focused

on secure coding practices.

• Justification: Most vulnerabilities

are introduced during development.

• Challenge: Keeping training

relevant as threats evolve.

REFERENCES:
1. Halfond, W. G., Orso, A., & Manolios, P.

(2006). AMNESIA: Analysis and

Monitoring for NEutralizing SQL-Injection

Attacks. In Proceedings of the 20th

IEEE/ACM International Conference on

Automated Software Engineering

(ASE'06).

2. Huang, Y., Huang, C., Su, S., & Lee, J.

(2014). A Survey on Web Application

Security. Journal of Software, 9(1), 218-

228.

3. Barth, A., Jackson, C., & Mitchell, J. C.

(2008). Robust Defenses for Cross-Site

Request Forgery. In Proceedings of the 15th

ACM Conference on Computer and

Communications Security (CCS '08).

Authors:

Mr. B. Amarnath Reddy is an Assistant

Professor in the Department of Master of

Computer Applications at QIS College of

Engineering and Technology, Ongole,

Andhra Pradesh. He earned his M.Tech

from Vellore Institute of Technology(VIT),

Vellore. His research interests include

Machine Learning, Programming

Languages. He is committed to advancing

research and fostering innovation while

mentoring students to excel in both

academic and professional pursuits.

Mr. KUNCHALA HEMANTH has received

his MCA (Masters of Computer Applications)

from QIS college of Engineering and

Technology Vengamukkapalem(V), Ongole,

Prakasam dist., Andhra Pradesh-

1829 JNAO Vol. 16, Issue. 1: 2025

